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Correction

GENETICS
Correction for “Genetic nurturing, missing heritability, and causal
analysis in genetic statistics,” by Hao Shen andMarcus W. Feldman,
which was first published September 28, 2020; 10.1073/
pnas.2015869117 (Proc. Natl. Acad. Sci. U.S.A. 117, 25646–25654).
The authors note that, “On page 25653, the argument that NTpa

and Xch are correlated in Fig. 2 is incorrect because the confounding
between Gpa and Xpa (U in Fig. 2), together with the con-
founding between Xpa and Xch (U’ in Fig. 2), generate a collider
Gpa ↔Xpa ↔Xch, which makes NTpa and Xch uncorrelated.” As a
result, a number of changes should be made to the article.
On page 25653, left column, third full paragraph, line 6, “For

example, if in addition to the confounding of the parents geno-
types and phenotypes, the parents’ and the child’s phenotypes
are also confounded (e.g., by certain sociological and demo-
graphical factors, represented by U’ in Fig. 2), then even if there
is no genetic influence, linkage disequilibrium, or parental phe-
notype influence, this correlation may still exist (Fig. 2)” should
be deleted.
On the same page, right column, first full paragraph, line 5, “,

or other mechanisms such as the combination of confounding
factors U and U’ shown in Fig. 2” should be deleted.

To further illustrate how pure cultural transmission, without
referring to mechanisms such as genetic nurturing, can make Gpa
and Xch correlated, the published Fig. 2 and its legend should be
replaced by the corrected versions shown below. Starting on page
25653, left column, second full paragraph, line 21, “(Path 4 still
exists even if NTpa →Xpa and Tpa →Xpa do not exist.)” should be
replaced with “Path 4 still exists even if NTpa →Xpa, Tpa →Xpa,
andGch →Xch do not exist, see Fig. 2. (In principle, we should also
include Gch ↔Xch in Fig. 2 since the genotypes and phenotypes
are confounded in the parents’ generation. However, adding this
will not activate any path, so we neglect it for simplicity.)”.
On page 25653, left column, second full paragraph, line 17,

“(such as assortative mating)” should be deleted.
In addition to the above changes, there are two typographical

errors unrelated to the error described above. On page 25649,
Eq. 17, an open bracket “[” should appear before the term
“rPn(1− c1)”. On page 25652, right column, first full paragraph,
line 2, “if there exist F1;F2” should be replaced with “if there exist
F1;F1’ ;F2”. None of the above errors nor their corrections affect the
main conclusions of the article. The corrected Fig. 2 and its corrected
legend appear below. The article has been updated online.

Fig. 2. A potential causal diagram where NTpa and Xch are correlated due to pure cultural transmission.
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Genetic nurturing, missing heritability, and causal
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Hao Shena and Marcus W. Feldmana,1
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Contributed by Marcus W. Feldman, August 25, 2020 (sent for review July 28, 2020; reviewed by Aviv Bergman and Bruce S. Weir)

Genetic nurturing, the effect of parents’ genotypes on offspring
phenotypes through parental phenotypic transmission, can be
modeled in terms of gene–culture interactions. This paper first
uses a simple one-locus, two-phenotype gene–culture cotransmis-
sion model to compute the effect of genetic nurturing in terms of
regression of children’s phenotypes on transmitted and nontrans-
mitted alleles. With genetic nurturing, interpreting heritability
and hence the meaning of “missing heritability” becomes prob-
lematic. Other factors, for example, population subdivision and
assortative mating, generate similar signals to those of genetic
nurturing, namely, correlation between parents’ nontransmitted
alleles and children’s phenotypes. Corrections must be made for
these to isolate the signal of genetic nurturing. Finally, a unified
causal framework is constructed for genetic nurturing, popula-
tion subdivision, and assortative mating. Causal and noncausal
paths from transmitted and nontransmitted alleles to children’s
phenotypes are identified and investigated in the presence of
genetic nurturing, population subdivision, and assortative mat-
ing. Using causal analysis, assumptions made in inferring direct
and indirect effects are then clarified and evaluated in a broader
causal context.

genetic nurturing | cultural transmission | missing heritability | population
subdivision and assortative mating | correlation and causality

The nature vs. nurture problem is fundamental to most human
sciences. History is replete with disastrous human suffering

caused by malevolent use of positions taken regarding this prob-
lem. In the second half of the 20th century, after the modern
evolutionary synthesis, researchers in human behavior started to
incorporate simple models from statistical genetics, in the pro-
cess extending such concepts as heritability beyond their original
function. The notion of heritability was first introduced by Lush
(1) in 1937 in animal breeding to predict the effectiveness of arti-
ficial selection. From the 1960s, people such as Arthur Jensen
(2) and others used an estimate known as “broad sense heritabil-
ity” as a statistical measure of genetic determination in research
into human behavior. Their high heritability estimates for IQ
led to a genetic deterministic view of human intelligence (3, 4).
These estimates were often based on studies of twins reared
together and apart (5) or on other correlations between rela-
tives. However, such estimates of broad heritability cannot dis-
entangle gene-by-environment interactions from purely genetic
effects (6–9).

The debates of the 1970s led Cavalli-Sforza and Feldman (10)
to construct generative models of cultural and genotypic trans-
mission from which one could assess the contribution of vertical
cultural transmission to phenotypic variation. They showed that
such cultural transmission could lead to inflated estimates of
genetic heritability.

Correlations between relatives continued to be the primary
tool for estimation of the genetic contribution to phenotypic vari-
ance throughout the 1970s and 1980s (3, 4, 11, 12), although the
importance of cultural transmission in inflating such correlations
was recognized by several investigators (7, 13–17). Analysis of the
model constructed by Cavalli-Sforza and Feldman (10) showed
that parents’ phenotypes, if transmitted through vertical cultural

transmission, could have strong effects on correlations between
relatives. This approach was used, and the results confirmed, by
Cloninger et al. (13–15) and also by Morton and coworkers in
Hawaii (17).

In the past 10 y, with the growing popularity of genome-wide
association studies (GWAS), heritability has been estimated
from data by accumulating the variance explained by millions
of single-nucleotide polymorphisms (SNPs) and in general SNP
heritability is lower than earlier estimates based on correlations
between relatives. This inconsistency is known as “missing her-
itability” (18, 19) and represents an important conundrum in
human statistical genetics. Different factors can contribute to
this inconsistency and we divide them into two categories: genetic
factors and demographic factors. Genetic factors include too
few SNPs (20–22) and complex genetic interactions [linkage dis-
equilibrium, epistasis (23), etc.]. Demographic factors include
cultural transmission (19, 22, 24), population subdivision (25),
and assortative mating (24). Both categories can contribute to
missing heritability and their relative importance can vary from
trait to trait. Historically, barring a few exceptions, researchers
have focused primarily on genetic factors.

Recently, Kong et al. (26) found substantial correlation
between parents’ nontransmitted alleles and children’s pheno-
types. They suggested that this correlation could be generated
by the effect of parents’ phenotypes, which are influenced by
parents’ genotypes, on children’s phenotypes. This sequence,
from parents’ genotypes to parents’ phenotypes to children’s

Significance

Correlation between genotypes and phenotypes can be pro-
duced by genetic nurturing, namely the effect of parents’
genotypes on their offspring’s phenotypes through the par-
ents’ phenotypes. Population subdivision and assortative mat-
ing can give rise to correlations between genotypes and
phenotypes similar to those due to genetic nurturing. Vari-
ances and correlations may not reveal causal relationships
in the presence of these complexities. We analyze mechanis-
tic models of genetic nurturing, population subdivision, and
assortative mating and compare these with results obtained
within the framework of modern causal analysis. Our results
clarify statistical signals emanating from correlations between
nontransmitted alleles and offspring phenotypes and reveal
difficulties with standard linear models in the interpretation
of heritability, in particular, the concept of missing heritability.
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phenotypes, was called “genetic nurturing.” Subsequent studies
connected genetic nurturing to the missing heritability problem
(27–29). These studies appear to be closely related to the original
model of Cavalli-Sforza and Feldman (10) and its generalization
by Feldman et al. (8). Here we propose a simple extension of
these models and show how vertical cultural transmission can
lead to genetic nurturing. This affects the linear regressions that
have been used to separate the contributions to phenotypes by
nature and nurture, and we show how it affects our understand-
ing of the missing heritability problem. We also explore how
population subdivision and assortative mating, which are com-
mon for many traits in humans (30, 31), can generate correlation
between nontransmitted alleles and children’s phenotype. A nat-
ural next step is to analyze how these different factors could
produce such a correlation in a causal framework, which can help
expose the nature–nurture conundrum (32–35), in the presence
of complex population dynamics and possible confounding fac-
tors. Thus, we propose a unified causal framework for genetic
nurturing, population subdivision, and assortative mating, which
extends to nonlinear cases such as the path analysis approach
used by Kong et al. (26). We also examine the approach they
used to estimate direct genetic effects and make corrections for
assortative mating.

A Model with Cultural Transmission
Genetic nurturing (26) entails that parents’ genotypes can have
an indirect effect on children’s phenotypes by influencing par-
ents’ phenotypes. This implies that children’s phenotypes will
be determined by both children’s genotypes and parents’ phe-
notypes, where the influence of parents’ phenotypes occurs via
vertical cultural transmission. Cavalli-Sforza and Feldman (10)
proposed a quantitative genetic model incorporating vertical
cultural transmission and showed that the heritability could
be overestimated if there was vertical cultural transmission.
However, for quantitative traits, it is very difficult to ana-
lyze the mathematical dynamics of a trait’s distribution. To
address this issue and develop some theoretical understand-
ing of the genetic nurturing effect, we construct a discrete
trait model based on Cavalli-Sforza and Feldman (10) and
show how the genetic nurturing effect can be included in
the model.

We consider one diploid locus with two alleles, A1 and A2.
Each genotype can be one of two phenotypic variants repre-
sented by bar and nonbar. Thus the six pheno-genotypes can be
written as AiAj and AiAj with i , j = 1, 2. The probability of a
child being bar is determined by the parents’ phenotypes and the
child’s genotype. To be specific, denote by Xch the phenotypic
state of the child, which is 1 for bar and 0 for nonbar; Gch the
genotypic state of the child, which is 1 for A1A1, 2 for A1A2, and
3 for A2A2; εGch the contribution of the child’s genotype when its
genotype is Gch ; and g(y , x ) the contribution of a parent’s phe-
notype when the parent’s phenotype is x and the child’s genotype
is y . Then we have

P(Xch = 1|Gch ,Xp ,Xm) = εGch + g(Gch ,Xp) + g(Gch ,Xm ), [1]

where g(y,x) = ayI (x = 1) + byI (x = 0), with I (·) the index func-
tion, and Xp and Xm stand for the phenotypic states of the father
and mother, respectively.

Since we can always move the common part of a and b into ε,
we reduce the number of parameters by specifying for y = 1, 2, 3,

ay − by = ey ; 2by + εy = cy . [2]

Table 1 describes this model, where

P(Xch = 1|Gch ,Xp ,Xm) =

cGch + eGch [I (Xp = 1) + I (Xm = 1)].
[3]

We denote the frequency of the bar phenotype with genotype y
at generation n by xn

y , the allele frequency of A1 by p, and the
allele frequency of A2 by q = 1− p. Without selection and assor-
tative mating, the population is in Hardy–Weinberg equilibrium
and p does not change. The frequencies of the six pheno-
genotypes A1A1,A1A1,A1A2,A1A2,A2A2,A2A2 are p2x1,
p2(1− x1), 2pqx2, 2pq(1− x2), q2x3, q2(1− x3), respectively.

Now consider the evolution under random mating. On the one
hand, the probability of being bar for A1A1 in generation n + 1 is
xn+1

1 . On the other hand, it equals c1 + 2e1P
n
1 , where Pn

1 repre-
sents the probability that one of the parents (say, the mother)
in generation n has the bar phenotype given that the child’s
pheno-genotype is A1A1. Since the child’s genotype is A1A1, the
mother’s genotype has to be A1Ai , where allele i has probabil-
ity p being 1 and probability q being 2. Since the probabilities of
being bar for A1A1 and A1A2 in generation n are xn

1 and xn
2 ,

we have Pn
1 = pxn

1 + qxn
2 . Thus, xn+1

1
= 2e1px

n
1 + 2e1qx

n
2 + c1.

Corresponding recursions for x2 and x3 can be derived, and
we have

xn+1
1 = 2e1px

n
1 + 2e1qx

n
2 + c1;

xn+1
2 = e2px

n
1 + e2x

n
2 + e2qx

n
3 + c2;

xn+1
3 = 2e3qx

n
3 + 2e3px

n
2 + c3.

[4]

The globally stable equilibrium of Eq. 4 (SI Appendix, section A),
denoted by (x1, x2, x3), is (x1, x2, x3) =

(
B1
A

, B2
A

, B3
A

)
with

A= 1− e2− 2e1p− 2e3q + 2e1e2p
2 + 2e2e3q

2

+ 4e1e3pq ;

B1 = (1− e2− 2e3q + 2e2e3q
2)c1 + 2e1q(1− 2e3q)c2

+ 2e1e2q
2c3;

B2 = e2p(1− 2e3q)c1 + (1− 2e3q)(1− 2e1p)c2

+ e2q(1− 2e1p)c3;

B3 = 2e3e2p
2c1 + 2e3p(1− 2e1p)c2 + (1− e2− 2e1p

+ 2e1e2p
2)c3.

[5]

Regression Analysis
We regress the child’s phenotype Xch on alleles transmitted from
the parents to the child and alleles not transmitted to the child.

Table 1. Transmission table

A1A1 A1A2 A2A2

AiAj ×AkAh ε1 + 2a1 = c1 + 2e1 ε2 + 2a2 = c2 + 2e2 ε3 + 2a3 = c3 + 2e3

AiAj × AkAh ε1 + a1 +b1 = c1 + e1 ε2 + a2 +b2 = c2 + e2 ε3 + a3 +b3 = c3 + e3

AiAj ×AkAh ε1 + a1 +b1 = c1 + e1 ε2 + a2 +b2 = c2 + e2 ε3 + a3 +b3 = c3 + e3

AiAj ×AkAh ε1 + 2b1 = c1 ε2 + 2b2 = c2 ε3 + 2b3 = c3

The first row shows the child’s genotype; the first column represents parents’ pheno-genotypes, and the entries
represent the child’s probability of having the bar phenotype conditioned on child’s genotype (first row) and parents’
phenotypes (first column).

Shen and Feldman PNAS | October 13, 2020 | vol. 117 | no. 41 | 25647
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Let the number of A2 in parental alleles transmitted to the
child be N t

pa ∈{0, 1, 2} and the number of A2 in parental alle-
les not transmitted to the child be N n

pa ∈{0, 1, 2}. Then, since
N t

pa and N n
pa are independent random variables, we can write

the regression equation

Xch =β1N
t
pa +β2N

n
pa + δ, [6]

where β1 =
Cov(Xch ,N t

pa )

Var(N t
pa )

;β2 =
Cov(Xch ,Nn

pa )

Var(Nn
pa )

, and δ is the sum of
the intercept and the residual. Calculation of these expressions
is shown in SI Appendix, section B, and we obtain

Var(N t
pa) = 2pq ; [7a]

Var(N n
pa) = 2pq ; [7b]

Cov(Xch ,N t
pa) = 2pq [p(x2− x1) + q(x3− x2)]; [7c]

Cov(Xch ,N n
pa) = 2pq [p(pe1 + qe2)(x2− x1)

+ q(pe2 + qe3)(x3− x2)]. [7d]

Then the coefficients in Eq. 6 are

β1 =
Cov(Xch ,N t

pa)

Var(N t
pa)

= p(x2− x1) + q(x3− x2); [8a]

β2 =
Cov(Xch ,N n

pa)

Var(N n
pa)

= p(pe1 + qe2)(x2− x1)

+ q(pe2 + qe3)(x3− x2).
[8b]

If the transmission process is purely genetic, that is, es are zero,
we have β2 = 0, and β1 = p(c2− c1) = q(c3− c2), which corre-
sponds to the classical average effect in Falconer and Mackay
(36) and the regression slope in Lynch and Walsh (ref. 37,
pp. 65–67). With cultural transmission, i.e., nonzero es, β1 still
has the familiar form 8a due to independence of transmitted
and nontransmitted alleles. However, the frequencies x1, x2, x3

will be complicated expressions in es and cs shown in Eq. 5,
and β2 will not be zero. We can understand this result more
clearly from the way parents’ nontransmitted alleles influence
children’s phenotypes. The nontransmitted alleles are included
in parents’ genotypes, which affect parents’ phenotypes, and
thus influence children’s phenotypes by cultural transmission
(es). When the cultural transmission pathway (genetic nur-
turing pathway) is absent (es =0), there is no influence of
nontransmitted alleles.

Kong et al. (26) assumed that both the transmitted and non-
transmitted alleles participate in genetic nurturing, which is also
the case in our model. Since the transmitted alleles influence
the parents’ phenotypes, as do the nontransmitted alleles, they
calculated the direct effect [δ in Kong et al.’s (26) paper] by
subtracting the regression coefficients of nontransmitted alleles
from those of the transmitted alleles. In our model, the corre-
sponding quantity is β1−β2, which represents the direct genetic
effect when the parents’ phenotypes have the same effect on
different children’s genotypes. To show this, we assume cs are
linear, i.e., (c1, c2, c3) = (c, c + d , c + 2d), and es are the same,
i.e., (e1, e2, e3) = (e, e, e). Using Eqs. 8 and 5 we then have

β1 = p(x2− x1) + q(x3− x2) =
d

1− e
[9a]

and

β2 = eβ1 =
ed

1− e
, [9b]

which implies
β1−β2 = (1− e)β1 = d . [9c]

Although β1 and β2 do not constitute “total” and “indirect”
effects due to the confounding of grandparents’ phenotypic
effects, their difference d is exactly the direct genetic effect.
This analysis can be extended to cases with arbitrary cs and the
same e , but it fails when es are different. This is because the
genetic nurturing influences the regression in two ways: First,
as shown above, it incorporates the nontransmitted alleles. Sec-
ond, it influences the equilibrium frequency of the bar phenotype
for each genotype, which makes it difficult to extract the direct
genetic effect, as claimed by Kong et al. (26). (For more detailed
analysis, see A Unified Causal Framework for Genetic Nurturing,
Population Subdivision, and Assortative Mating and SI Appendix,
sections E and J.) We will see in the next part that this observa-
tion also leads to an interesting view of the missing heritability
problem.

Missing Heritability?
The missing heritability problem (18) arises when the heritability
calculated from regression on alleles is lower than the heritabil-
ity calculated from correlations between relatives. As pointed
out by Cavalli-Sforza and Feldman (10), the latter heritability
can be overestimated if there is vertical cultural transmission.
To quantify this in our model, we regress the child’s phenotype
on the parental phenotypes. The parent–offspring phenotype
covariance (SI Appendix, section C) can be written

Cov(Xch ,Xp +Xm) = ∆1 + ∆2, [10]

where
∆1 = 2pqβ2

1 ; [11a]

∆2 = 2p(pe1 + qe2)(px1 + qx2)[1− (px1 + qx2)]

+ 2q(pe2 + qe3)(px2 + qx3)[1− (px2 + qx3)]
. [11b]

(Note that for convenience, we use the sum of the parental
phenotypic values rather than their average.) Note that the
additive genetic variance calculated by regression on transmit-
ted alleles is VA =Var(N t

pa)β2
1 = 2pqβ2

1 = ∆1, and ∆2 is always
positive. Thus the missing heritability can be explained qualita-
tively by Cov(Xch ,Xp +Xm)−VA = ∆2 > 0. More formally, let
j1 = px1 + qx2; j2 = px2 + qx3, which gives

∆1

∆2
=

pq(j1− j2)2

p(pe1 + qe2)j1(1− j1) + q(pe2 + qe3)j2(1− j2)
[12]

In the parameter region where ∆1
∆2
� 1, the heritability esti-

mated from regression on alleles is much smaller than the
heritability estimated from correlations between relatives. This
seems to explain the missing heritability problem. However, our
analysis raises two problems in interpreting missing heritability,
which render it meaningless in the context of cultural transmis-
sion. First, the genetic nurturing effect entails that the additive
genetic variance computed from GWAS and that computed from
correlations between relatives both depend on the equilibrium
frequencies (xis), which depend on both cs and es. This is true
even in the case where es are all the same and cs are linear.
In this case, from Eq. 9a, we have ∆1 = 2pqd2

(1−e)2
, and calculation

of Cov(Xch ,Xp +Xm) shows that this also depends on d and
e . (For details, see SI Appendix, section D.) Thus the so-called
“missing heritability problem” is generated by comparing two
quantities, neither of which is purely genetic. Second, although
cultural transmission can contribute to missing heritability, the
absence of missing heritability does not imply that cultural
transmission is weak or absent. There exist parameter regions
where cultural transmission is relatively strong but the two her-
itability estimates are roughly the same. (For detailed analysis
and examples, see SI Appendix, section D.) Given thesetwo
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issues, the dichotomy of nature and nurture simply does not
apply in the systems with genetic nurturing and vertical cultural
transmission.

Population Subdivision and Assortative Mating
Population subdivision and assortative mating can have pro-
found effects on the missing heritability (24, 25). It is then
interesting to compare statistical signals generated by popu-
lation subdivision and assortative mating with that of genetic
nurturing. Kong et al. (26) made a correction for assortative mat-
ing. Here we use a simple one-locus, two-allele purely genetic
model to show how population subdivision and assortative mat-
ing can generate a signal similar to that of genetic nurturing,
namely, the correlation between parents’ nontransmitted alleles
and children’s phenotypes. We also examine how Kong et al. (26)
corrected for assortative mating.

The Effect of Population Subdivision. Consider a metapopulation
H which includes k subpopulations, denoted by H1, . . . ,Hk . The
relative sizes of the subpopulations are denoted by α1, . . . ,αk ,
respectively. Again we assume there are two alleles, A1 and A2,
and two phenotypes, bar and nonbar. The probability of being
bar is genetically determined and is c1 for A1A1, c2 for A1A2,
and c3 for A2A2. Hardy–Weinberg equilibrium is assumed for
each subpopulation and the frequencies of A1 and A2 in pop-
ulation i are assumed to be pi and qi . The frequencies of
A1 and A2 in the metapopulation are thus p =α1p1 + · · ·+
αkpk and q =α1q1 + · · ·+αkqk , respectively. The genotype fre-
quencies for A1A1,A1A2,A2A2 are then

∑k
i=1 αip

2
i , 2

∑k
i=1

αipiqi ,
∑k

i=1 αiq
2
i , respectively, which we denote by u, 2v ,w .

Set xi = c1p
2
i + 2c2piqi + c3q

2
i and x =

∑k
i=1 αixi , which repre-

sent, respectively, the frequencies of bar in each subpopulation
and the metapopulation. We now study how subpopulation
structure may mimic genetic nurturing.

First, we regress the child’s phenotype on alleles transmit-
ted and alleles not transmitted to the child (in the metapop-
ulation). We again denote the child’s phenotypic value by
Xch , which is 1 for the bar phenotype and 0 for the non-
bar phenotype. Let the numbers of the father’s and mother’s
transmitted A2 alleles be (N t

p ,N t
m) and the numbers of

the nontransmitted A2 alleles be (N n
p ,N n

m). The regression
is then

Xch =β1(N t
p +N t

m) +β2(N n
p +N n

m) + δ, [13]

where β1 and β2 are the regression coefficients and δ is the sum
of the intercept and the residual.

Using the law of total variance we can calculate the covari-
ances among N t

p ,N t
m ,N n

p ,N n
m and Xch (SI Appendix, section F)

and obtain

Cov(N a
A ,N b

B ) = pq − v ;

Cov(Xch ,N n
m) =Cov(Xch ,N n

p ) =
k∑

i=1

αiqixi − qx ;

Cov(Xch ,N t
m) =Cov(Xch ,N t

p ) =

k∑
i=1

αiqixi − qx

+

k∑
i=1

αipiqi [pi(c2− c1) + qi(c3− c2)],

[14]

where N a
A and N b

B are two different elements of the set {N t
p ,

N t
m ,N n

p ,N n
m}. Denote

∑k
i=1 αiqixi − qx by K1 and

∑k
i=1

αipiqi [pi(c2− c1) + qi(c3− c2)] by K2. Then from multivariate
regression analysis (SI Appendix, section F), we obtain

β1 =
K1v +K2(2pq − v)

(4pq − 3v)v
;

β2 =
K1v −K2(2pq − 2v)

(4pq − 3v)v
;

[15]

and

β1−β2 =
K2

v
. [16]

Thus, when a population is subdivided, the nontransmitted alle-
les will also be correlated with the phenotype and the regression
coefficient β2 will in general not be zero. This correlation is
generated by differences among allele frequencies in subpopula-
tions. Both K1, the covariance of probabilities being bar among
subpopulations, and pq − v , the variance of allele frequencies
among subpopulations, will be nonzero when such differences
exist. This means that even in the purely genetic case, population
subdivision may generate correlation between children’s pheno-
types and nontransmitted alleles, which is considered by Kong et
al. (26) as the signal of genetic nurturing. Thus, a correction must
be made if we want to separate the genetic nurturing effect from
that of population subdivision.

The Effect of Assortative Mating. Assortative mating can be viewed
as a special kind of population subdivision, namely, division into
assorting groups, and an analysis similar to the above can be
applied with assortative mating. Again we have alleles A1 and
A2 with phenotypes bar and nonbar. The frequencies of A1

and A2 are p and q . The probabilities of a child being bar if
its genotype is A1A1,A1A2,A2A2 are, respectively, c1, c2, c3.
In each generation, we assume a proportion r of individuals
mate assortatively based on phenotype and the remaining indi-
viduals mate randomly. Denote the genotype frequencies of
A1A1,A1A2,A2A2 in generation n by Pn , 2Qn ,Rn , respec-
tively. Since the proportion of bar in each genotype is fixed, we
need only analyze the genotype frequency dynamics, and since
Pn +Qn = p;Rn +Qn = q and p and q do not change, there is
only one free variable. Thus, we need only to solve the recursion
for one of Pn ,Qn ,Rn ; here we focus on the recursion for Qn ,
namely

Qn+1 = (1− r)pq +

{
(Pnc1 +Qnc2)(Rnc3 +Qnc2)

[Pnc1 + 2Qnc2 +Rnc3]2
×

(rPnc1 + 2rQnc2 + rRnc3)

}
+

{
[Pn(1− c1) +Qn(1− c2)][Rn(1− c3) +Qn(1− c2)]

[Pn(1− c1) + 2Qn(1− c2) +Rn(1− c3)]2

× [rPn(1− c1)

}
+ 2rQn(1− c2) + rRn(1− c3)].

[17]

In SI Appendix, section G, we prove that there is a unique
globally stable fixed point for the dynamical system 17. Assum-
ing the equilibrium genotype frequencies are (u, 2v ,w), we can
use a regression analysis similar to that used for population
subdivision. Let

α= [p(c2− c3)− q(c2− c1)]v + pq(c3− c1);

β= (c3 + c1− 2c2)(q1 + q2) + 2(c2− c1);

x =E(Xch) = uc1 + 2vc2 +wc3.

[18]

We can then compute the covariances among N t
p ,N t

m ,N n
p ,N n

m

and Xch (SI Appendix, section H); namely,
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Cov(N a
A ,N b

B ) =
rα2

x (1− x )
.;

Cov(Xch ,N n
m) =Cov(Xch ,N n

p ) =α;

Cov(Xch ,N t
m) =Cov(Xch ,N t

p ) =βCov(N a
A ,N b

B ) =
rα2β

x (1− x )
.

[19]

Comparing these results with those of the population subdivision
model, we see that in the assortative mating model,

K1 =Cov(Xch ,N n
m) =β(pq − v);

K2 =Cov(Xch ,N t
m)−Cov(Xch ,N n

m) =α[1− rαβ

x (1− x )
],

which, together with Eq. 16, gives the regression coefficients.
As a special case of population subdivision, assortative mating
can also generate a similar signal to that of genetic nurturing
and should be corrected for in computations of correlations.
Kong et al. (26) do make the correction and we agree with
their conclusion that the effect of assortative mating is rel-
atively weak. However, there may be a problem with their
model assumptions. To be specific, when assumption VI in
their supplementary material section “Estimating the confound-
ing effects induced by assortative mating” is translated into
our model, it amounts to assuming Cov(N t

p ,N n
p ) and Cov(N t

m ,

N n
m) are zero while Cov(N t

p ,N t
m), Cov(N n

p ,N n
m), Cov(N t

p ,N n
m),

Cov(N t
m ,N n

p ), Cov(N t
p ,N t

m), and Cov(N n
p ,N n

m) are not zero.
From our analysis this appears unreasonable since these covari-
ances should all be the same.

A Unified Causal Framework for Genetic Nurturing,
Population Subdivision, and Assortative Mating
In previous sections, we proposed a mechanistic model for
genetic nurturing and showed how population subdivision and
assortative mating could mimic genetic nurturing. We followed
Kong et al. (26) and used a linear regression (i.e., path analy-
sis or structural equation model [SEM]) method for mediation
analysis. We showed that this method works well in the lin-
ear setting but becomes problematic in the nonlinear case.
Fortunately, traditional structural mediation analysis and sepa-
ration of total effect into direct effect and indirect effect can
be naturally extended to the nonlinear setting using do calcu-
lus and counterfactuals in causal analysis (38). Further, causal
analysis provides powerful techniques for analyzing different
causal effects and the influence of confounding factors (39,
40), which can also help frame the mismatch between causal-
ity and statistics used in the nature–nurture discussion, such
as variance (6) and correlation. We therefore employ causal
analysis in constructing a semi-Markovian causal model (Fig. 1)
for genetic nurturing, population subdivision, and assortative
mating (details in SI Appendix, section J). Using this unified
causal framework, we show that the correlations between non-
transmitted alleles and the phenotype under genetic nurturing,
population subdivision, and assortative mating represent differ-
ent pathways in the causal diagram. We also analyze different
effects of transmitted alleles and clarify when the analysis by
Kong et al. (26) of genetic nurturing works and when it fails.

In Fig. 1, Gpa = (Gm ,Gp) and Gch , respectively, represent
the parents’ and the child’s genotypes, Tpa = (Tm ,Tp) repre-
sents the alleles transmitted from the parents, and NTpa =
(NTm ,NTp) represents the alleles not transmitted from the par-
ents. Xpa = (Xm ,Xp) and Xch represent the parents’ and the
child’s phenotypes. The parents’ genotypes and phenotypes are
confounded by U and are thus connected by the bidirectional
arc in Fig. 1. We study the effects of transmitted alleles and
nontransmitted alleles.

Fig. 1. A unified causal diagram for genetic nurturing, population sub-
division, and assortative mating.

In the causal diagram of Fig. 1, the “total effect” of
changing transmitted alleles from Tpa = x to Tpa = y on the
child’s phenotype can be represented by P(Xch |do(Tpa = y))−
P(Xch |do(Tpa = x )), in which case the quantity correspond-
ing to the regression coefficient β1 will be P(Xch |Tpa = y)−
P(Xch |Tpa = x ); the total effect of changing nontransmitted
alleles from NTpa = x to NTpa = y on the child’s phenotype can
be represented by P(Xch |do(NTpa = y))−P(Xch |do(NTpa =
x )), in which case the quantity corresponding to the regression
coefficient β2 will be P(Xch |NTpa = y)−P(Xch |NTpa = x ). The
relationships among these quantities and the path-specific effects
corresponding to the “direct effect” and the “indirect effect” in
Kong et al.’s (26) paper are analyzed in detail below.

Before doing the analysis, we address a key problem for the
identification of different effects in Fig. 1, namely, the defini-
tion of P(Xpa |Tpa ,NTpa ,Gpa). This quantity is not always well
defined because the parents’ genotypes are automatically deter-
mined when the transmitted alleles and nontransmitted alleles
are known. Thus, to use causal analysis, we must define this prob-
ability P(Xpa |Tpa ,NTpa ,Gpa) when Gpa is not compatible with
Tpa ,NTpa . If the confounding factor U in Fig. 1 is known, then
this quantity is just

∑
U P(Xpa |Tpa ,NTpa ,U )P(U |Gpa); other-

wise, some prior knowledge of U is needed. Table 2 lists the
symbols used throughout our application of the causal analysis,
while Table 3 lists the analogous symbols used in the cultural
transmission model.

Fortunately, for genetic nurturing, population subdivision,
and assortative mating, the required prior knowledge exists.
For population subdivision and assortative mating, since the
effect is purely genetic, we have P(Xpa |Tpa ,NTpa ,Gpa) =
P(Xpa |Tpa ,NTpa). For genetic nurturing, U represents the
grandparents’ phenotypic influence. Denote the mother’s par-
ents’ phenotypes by Xmpa = (Xmm ,Xmp) and the father’s parents’
phenotypes by Xppa = (Xpm ,Xpp). Then

P(Xpa |Tpa ,NTpa ,Gpa)

=
∑
Xmpa,
Xppa

P(Xpa |Tpa ,NTpa ,Xmpa,Xppa)P(Xmpa,Xppa|Gpa),

[20]

which can be calculated if data from the grandparents’ genera-
tion are given. If these data are not given (which we assume in
this paper), we may assume that the population is at equilibrium
under random mating, in which case

P(Xpa |Tpa ,NTpa ,Xmpa,Xppa)

=P(Xm |Tm ,NTm ,Xmpa)P(Xp |Tp ,NTp ,Xppa);

P(Xmpa,Xppa|Gpa) =P(Xmpa|Gm)P(Xppa|Gp).

[21]
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Table 2. Symbols used in causal analysis

Notation Meaning

Gch The child’s genotype
Gm The mother’s genotype
Gp The father’s genotype
Gpa The parents’ genotypes, denoted by (Gm, Gp)
Xch The child’s phenotype
Xm The mother’s phenotype
Xp The father’s phenotype
Xpa The parents’ phenotypes, denoted by (Xm, Xp)
Xmm The mother’s mother’s phenotype
Xmp The mother’s father’s phenotype
Xmpa The mother’s parents’ phenotypes, denoted by (Xmm, Xmp)
Xpm The father’s mother’s phenotype
Xpp The father’s father’s phenotype
Xppa The father’s parents’ phenotypes, denoted by (Xpm, Xpp)
Tm Alleles transmitted from the mother to the child
Tp Alleles transmitted from the father to the child
Tpa Alleles transmitted from the parents to the child,

denoted by (Tm, Tp)
NTm Alleles not transmitted from the mother to the child
NTp Alleles not transmitted from the father to the child
NTpa Alleles not transmitted from the parents to the child,

denoted by (NTm, NTp)

Each term on the right-hand side of [21] can be calculated using
data from the parents’ generation. For example, we may assume
P(Xmpa = x |Gm = g) =P(Xpa = x |Gch = g), where x is a vector
of two phenotypes and g is a genotype. (P(Xm |Tm ,NTm ,Gm)
and P(Xp |Tp ,NTp ,Gp) can be defined similarly.)

Now, since P(Xpa |Tpa ,NTpa ,Gpa) is defined and identifiable,
we are now able to calculate the effects of nontransmitted alleles
(NTpa) on the child’s phenotype (Xch). NTpa has one front-door
(causal) path (we denote this by path 1; for definition of front-
door path, see SI Appendix, section J) to Xch ,

NTpa→Xpa→Xch ,

and three backdoor (noncausal) paths (denoted by paths 2, 3,
and 4; for definition of backdoor path, see SI Appendix, section
J) to Xch ,

NTpa← (Tpa ,NTpa)→Tpa→Gch→Xch ;

NTpa← (Tpa ,NTpa)→Tpa→Xpa→Xch ;

NTpa← (Tpa ,NTpa)←Gpa↔Xpa→Xch .

Following refs. 40–42, in the causal diagram Fig. 1, P(Xch |do
(NTpa)) can be given by

P(Xch |do(NTpa)) =
∑
Gpa
Tpa
Xpa

{P(Gpa)P(Tpa |Gpa) ×

P(Xpa |Tpa ,NTpa ,Gpa)P(Xch |Tpa ,Xpa)}.

[22]

Thus the total effect of changing from NTpa = x to NTpa = y
given by P(Xch |do(NTpa = y))−P(Xch |do(NTpa = x )) can
be calculated using Eq. 22. In the population subdivision
and assortative mating case, since there is no effect of the
parental phenotypes, the edge Xpa→Xch (in Fig. 1) and paths
1, 3, and 4 vanish, so P(Xch |Gch ,Xpa) =P(Xch |Gch). This
automatically gives P(Xch |do(NTpa)) =P(Xch) and P(Xch |do
(NTpa = y))−P(Xch |do(NTpa) = x ) = 0, which means there
is no causal effect of the nontransmitted alleles on the
child’s phenotype. However, because of the existence of

the active backdoor path 2, P(Xch |NTpa) 6=P(Xch) and
P(Xch |NTm = y)−P(Xch |NTpa = x ) is not zero in general.
To be specific, population subdivision and assortative mating
introduce correlation between allele frequencies and (assorting)
groups so that NTpa contains group information. As a result,
P(Tpa |NTpa = y) and P(Tpa |NTpa = x ) will generally not
be the same and P(Xch |NTpa = y)−P(Xch |NTpa = x ) =∑

Tpa
[P(Tpa |NTpa = y)−P(Tpa |NTpa) = x ]P(Xch |Tpa) will

not be zero in general, which explains the correlation between
the nontransmitted alleles and the child’s phenotype when there
is population subdivision or assortative mating despite there
being no causal path between these two quantities.

For genetic nurturing, Gpa and Xpa are confounded due to
the influence of the grandparents’ phenotypes. In a random mat-
ing population, paths 2 and 3 are deactivated because under
random mating, P(Tpa |NTpa) =P(Tpa |do(NTpa)) =P(Tpa).
Thus, P(Xch |NTpa) is influenced by paths 1 and 4, with
P(Xch |do(NTpa)) representing the effect of path 1. This
means that in the genetic nurturing case, P(Xch |NTpa = y)−
P(Xch |NTpa = x ), which corresponds to β2 in the previous sec-
tion (Eqs. 6 and 8b), is in general not a suitable representation of
the effect of the nontransmitted alleles. The correlation between
the nontransmitted alleles and the child’s phenotype is in gen-
eral not zero, but is a result of both genetic nurturing and
confounding between the parents’ genotypes and phenotypes.
This confounding, in the genetic nurturing case, is due to the
grandparents’ phenotypic influence. [Kong et al. (26) did not
take account of the grandparents’ influence or genetic nurtur-
ing’s influence on pheno-genotype frequencies; they therefore
artificially deactivated path 4, which allowed their regression
to work.]

Now we consider the effect of transmitted alleles. It is easy
to see that there are four paths from Tpa to Xch , namely, two
front-door paths (denoted by path 1′ and path 2′)

Tpa→Gch→Xch ;

Tpa→Xpa→Xch ,

and two backdoor paths (denoted by path 3′ and path 4′)

Tpa← (Tpa ,NTpa)→NTpa→Xpa→Xch ;

Tpa← (Tpa ,NTpa)←Gpa↔Xpa→Xch .

From the analyses in refs. 40–42, P(Xch |do(Tpa)) is given by

P(Xch |do(Tpa)) =
∑
Gpa
NTpa
Xpa

{P(Gpa)P(NTpa |Gpa) ×

P(Xpa |Tpa ,NTpa ,Gpa)P(Xch |Tpa ,Xpa)}

[23]

Table 3. Matching symbols in the two models

Notation in cultural Corresponding representation
transmission model in the unified causal model

c1 P(Xch = 1|Gch =A1A1, Xpa = (0, 0))
c1 + e1 P(Xch = 1|Gch =A1A1, Xpa = (1, 0) or (0, 1))
c1 + 2e1 P(Xch = 1|Gch =A1A1, Xpa = (1, 1))
c2 P(Xch = 1|Gch =A1A2, Xpa = (0, 0))
c2 + e2 P(Xch = 1|Gch =A1A2, Xpa = (1, 0) or (0, 1))
c2 + 2e2 P(Xch = 1|Gch =A1A2, Xpa = (1, 1))
c3 P(Xch = 1|Gch =A2A2, Xpa = (0, 0))
c3 + e3 P(Xch = 1|Gch =A2A2, Xpa = (1, 0) or (0, 1))
c3 + 2e3 P(Xch = 1|Gch =A2A2, Xpa = (1, 1))

Here for simplicity, we assume X = 1 for bar phenotype and X = 0 for
nonbar phenotype.
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Similarly as in the above analysis of nontransmitted alleles,
with population subdivision or assortative mating, only path 1′

is activated, and P(Xch |do(Tpa)) =P(Xch |Tpa). With genetic
nurturing, path 3′ vanishes while paths 1′, 2′, and 4′, which
jointly contribute to P(Xch |Tpa), are activated. Also P(Xch |Tpa)
represents the joint effect of causal paths 1′ and 2′. As for
the nontransmitted alleles, because of the confounding of the
parents’ genotypes and phenotypes, which introduces a back-
door path 4′, P(Xch |Tpa = y)−P(Xch |Tpa = x ), corresponding
to β1 (Eqs. 6 and 8a), is in general not a suitable representa-
tion of the total effect of the transmitted alleles. [Again Kong
et al. (26) ignore path 4′, which allows their regression method
to work.]

Nonetheless, the total effect of the transmitted alleles can be
calculated using the do operator. Since there are two causal paths
in this case, it is interesting to identify the path-specific effects.
In mediation analysis, the path-specific effects of paths 1′ and 4′

are called “natural direct effect” and “natural indirect effect,”
respectively. The total effect of changing from Tpa = x to Tpa =
y can then be partitioned to into these two effects. Following
refs. 43 and 44, the natural direct and natural indirect effects can
be calculated as follows:

Natural direct effect:∑
Gpa
NTpa
Xpa

{P(Gpa)P(NTpa |Gpa)P(Xpa |Tpa = x ,NTpa ,Gpa)

× [P(Xch |Tpa = y ,Xpa)−P(Xch |Tpa = x ,Xpa)]};
[24]

Natural indirect effect:∑
Gpa
NTpa
Xpa

{P(Gpa)P(NTpa |Gpa)P(Xch |Tpa = y ,Xpa) ×

[P(Xpa |Tpa = y ,NTpa ,Gpa)−P(Xpa |Tpa = x ,NTpa ,Gpa)]}.
[25]

Kong et al. (26) also make this separation and called them direct
effect and indirect effect, respectively. They also use the differ-
ence between regression coefficients for the transmitted alleles
and the nontransmitted alleles to represent the direct effect of
transmitted alleles. However, as we have shown above, their esti-
mates of the total effects of the transmitted and nontransmitted
alleles, represented by P(Xch |Tpa = y)−P(Xch |Tpa = x ) and
P(Xch |NTpa = y)−P(Xch |NTpa = x ), respectively, are biased
due to the confounding of the parents’ phenotypes and geno-
types. Thus, we need to analyze the relationships among the
following three quantities:

1) The difference between the total effects of the transmitted
alleles and the nontransmitted alleles, represented by

[P(Xch |do(Tpa = y))−P(Xch |do(Tpa = x ))]

− [P(Xch |do(NTpa = y))−P(Xch |do(NTpa = x ))].
[26]

2) Kong et al.’s (26) estimates of direct effect, represented by

[P(Xch |Tpa = y)−P(Xch |Tpa = x )]

− [P(Xch |NTpa = y)−P(Xch |NTpa = x )].
[27]

3) Path 1-specific causal effects, the natural direct effect in our
causal diagram (Fig. 1), represented by

∑
Gpa ,
NTpa ,
Xpa

{P(Gpa)P(NTpa |Gpa)P(Xpa |Tpa = x ,NTpa ,Gpa)

× [P(Xch |Tpa = y ,Xpa)−P(Xch |Tpa = x ,Xpa)]}.
[28]

These three quantities will be the same (for proof, see SI
Appendix, section J) if there exist F1,F1′ ,F2 such that for y =
(ym , yp) and x = (xm , xp)

P(Xm |Tm ,NTm = ym ,Gm)

−P(Xm |Tm ,NTm = xm ,Gm) =F1(Xm , ym , xm);
[29]

P(Xm |Tm = ym ,NTm ,Gm)

−P(Xm |Tm = xm ,NTm ,Gm) =F1(Xm , ym , xm);
[30]

P(Xp |Tp ,NTp = yp ,Gp)

−P(Xp |Tp ,NTp = xp ,Gp) =F1′(Xp , yp , xp);
[31]

P(Xp |Tp = yp ,NTp ,Gp)

−P(Xp |Tp = xp ,NTp ,Gp) =F1′(Xp , yp , xp);
[32]

P(Xch |Tpa = y ,Xpa)

−P(Xch |Tpa = x ,Xpa) =F2(Xch , y , x ).
[33]

Obviously, this assumption of additivity is exactly what the SEM
and that of Kong et al. (26) assume. However, there are two
problems. First, even when this assumption holds and the direct
effect is estimated properly, their estimate of the total effect
and the indirect effect is biased (SI Appendix, section J). Sec-
ond, when this assumption is violated, as in the general case of
the model defined by Table 1, these three quantities will not
be the same. Thus, using the difference between total effects of
the transmitted and nontransmitted alleles to estimate the direct
effect of the transmitted alleles may be problematic.

Discussion
In this paper, we propose a simple generative model of cultural
transmission and study the effects of including population subdi-
vision and assortative mating in the model. Four main issues are
addressed. First, the cultural transmission model gives a quan-
titative explanation of genetic nurturing that can be compared
with that of Kong et al. (26). Second, we show how the notion
of heritability from traditional statistical genetics is inadequate
under this simple setting. Third, we show how population sub-
division and assortative mating can generate signals similar to
genetic nurturing and examine Kong et al.’s method (26) for cor-
rection of assortative mating. Finally, we propose a unified causal
diagram for genetic nurturing, population subdivision, and assor-
tative mating. Two statistical signals are used for our analysis:
the difference between heritability estimated from GWAS and
that estimated from pedigrees and the nonnegligible correlation
between parents’ nontransmitted alleles and children’s pheno-
types. Here we discuss the meaning of these two signals in a more
general context.

For the first signal, represented by the missing heritability, we
show in our gene–culture coevolution model, that heritability
is an ill-defined notion and fails to decompose the total vari-
ance into nature and nurture. In addition, this failure, which is
reflected in the missing heritability problem, has to be considered
in the broader context of other problems, since it can be caused
by both genetic and demographic factors, whose importance
can vary from trait to trait. For example, having too few SNPs
may produce missing heritability in height and body mass index
(21, 22), while for social and behavioral traits, cultural transmis-
sion can be an important factor. However, even for height and
body-mass index (BMI), it is not easy to exclude confounding
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cultural factors, such as diet, that can be vertically transmitted.
In our analysis, when genetic nurturing exists, we find parame-
ter regions where cultural transmission is not negligible, but the
two estimates of heritability are roughly the same; this can be
easily extended to the cases where parents’ phenotypes and geno-
types are confounded by factors other than genetic nurturing.
Thus, when vertical cultural transmission is potentially involved,
heritability will not be a meaningful statistic.

Second, we show that genetic nurturing, population subdivi-
sion, and assortative mating can contribute to a second signal,
namely, the correlation between parents’ nontransmitted alle-
les and children’s phenotypes. We also show that the method
Kong et al. (26) used to correct for assortative mating entails
restrictive assumptions. Using the causal diagram in Fig. 1, we
see that the scenario is more complex when genetic nurtur-
ing coexists with population subdivision or assortative mating.
When genetic nurturing coexists with population subdivision,
P(Xpa |Tpa ,NTpa ,Gpa) can be defined similarly for each sub-
population. The difference between this case and genetic nur-
turing without population subdivision is that paths 2, 3, and 3′

will be activated. With genetic nurturing in the case of assorta-
tive mating, there is an added complication due to the additional
source of confounding between the parents’ genotypes and phe-
notypes; prior information about this confounding is needed for
P(Xpa |Tpa ,NTpa ,Gpa) to be well defined.

In our unified causal diagram (Fig. 1), the correlation between
the parents’ nontransmitted alleles (NTpa) and the child’s phe-
notype (Xch) can arise from two different classes of paths: either
through Tpa (paths 2 and 3) or not through Tpa but through Xpa

(paths 1 and 4). The paths through Tpa can be tested and possibly
corrected using linkage disequilibrium (LD). The path through
Xpa , either causal or noncausal, implies the influence of parents’
phenotypes. Here we emphasize two points. First, although in the
two-allele, two-phenotype model, we assumed that the parents’
phenotypes and that of the child referred to the same trait, in
our causal diagram they could refer to different traits that have a
causal relationship. In this case there will be “cultural influence”
instead of “cultural transmission” but the whole causal diagram
and all of the analysis will still be valid. Second, although without
prior information about confounding the different effects cannot
be calculated, confounding factors other than genetic nurturing
between the parents’ phenotypes and genotypes can still produce
correlation between the nontransmitted alleles and the child’s
phenotype if the pathway from Xpa to Xch is activated, even
when there is no genetic basis for the phenotypes. Path 4 still
exists even if NTpa→Xpa , Tpa→Xpa , and Gch→Xch do not
exist, see Fig. 2. (In principle, we should also include Gch↔Xch

in Fig. 2 since the genotypes and phenotypes are confounded
in the parents’ generation. However, adding this will not acti-
vate any path, so we neglect it for simplicity.) In this case the
correlation generated by the parental phenotypic influence and
genotype–phenotype confounding will be an indicator of pure
cultural influence or cultural transmission.

Although our causal diagram unifies genetic nurturing, popu-
lation subdivision, and assortative mating and can be extended
qualitatively to more general cases of linkage disequilibrium
and parental influences, it does not exhaust all potential mech-
anisms that could generate correlation between nontransmitted

Fig. 2. A potential causal diagram where NTpa and Xch are correlated due
to pure cultural transmission.

alleles and children’s phenotypes. Recent findings by Mostafavi
et al. (45) that polygenic scores, which are computed under addi-
tive assumptions on allelic variances, are not portable among
population groups with the same apparent genetic ancestry are
relevant in the context of our analysis. They attribute their
result to factors such as genetic nurturing (i.e., indirect genetic
affects) and assortative mating studied here, as well as varying
levels of environmental variance and genotype-by-environment
interactions.

The correlation between parents’ nontransmitted alleles and
children’s phenotypes is a signal of demographic or social influ-
ences, which can include parental phenotypic influence (genetic
nurturing as a special case), or linkage disequilibrium (popula-
tion subdivision as a special case). (Confounding between Gpa

and Xch without referring to Xpa can also contribute to such cor-
relation, but in reality will be less likely.) More knowledge of the
potential confounding factors is needed if we want to distinguish
between these mechanisms more precisely.

Lewontin (ref. 6, p. 409) pointed out the pitfalls in inferring
causality from variance statistics, including heritability derived
from familial analyses: “The analysis of causes in human genet-
ics is meant to provide us with the basic knowledge we require for
correct schemes of environmental modification and intervention.
Together with a knowledge of the relative frequencies of dif-
ferent human genotypes, a knowledge of norms of reaction can
also predict the demographic and public health consequences of
certain massive environmental changes. Analysis of variance can
do neither of these because its results are a unique function of the
present distribution of environment and genotypes.” Lewontin’s
admonition, made 46 y ago, remains pertinent today with respect
to SNP heritability derived from GWAS. Inference of causal-
ity from the relationships among statistical signals, including
correlations and variances, remains extremely difficult.

Data Availability. All study data are included in this article and SI
Appendix.
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